

EXISTING STRUCTURES

CONSERVATION AND REMEDIAL WORK

Agnieszka Bigaj-van Vliet

CONTENT

- > Longevity of concrete structures
- Conservation of concrete structures
 - Conservation process
 - Conservation strategies
 - Inspection, testing and monitoring
 - Interventions
- > MC2020 advancing the through-life management and care of concrete structures
 - > Questions & discussion

LONGEVITY OF STRUCTURES

We adapt and reuse since centuries

Pantheon, Rome, Italy

- built circa 126 BC
- still remains in service
- originally a Roman temple
- now a working church

LONGEVITY OF STRUCTURES

We reuse and adapt since centuries

Cathedral van Córdoba, Spain

- erected as of Christian Visigoth temple
- *in 784 the Great Mosque constructed making use of Visigoth temple columns and other elements*
- in 13th century the Roman Catholic Church is build in the middle of the mosque, with 400 out of 12000 collumns being removed.

LONGEVITY OF STRUCTURES

Moerdijk bridge, Netherlands

- *built 1936*
- demolished 1976/78
- 10 segments for reuse

Keizersveer bridge, Netherlands

6 segments reused

Spijkenisser bridge, Netherlands

• 4 segments

HOW TO DEAL WITH LONGEVITY OF STRUCTURES

Enginering considerations:

- original design
- knowlede and experience with similar structures
- assesment of current capacity
-) risks
-) -...

Effort Keizersveer bridge

- Re-design in 1974 in totaal 63 pp.
- > Ongoing re-design: 322 pp. ... and still in progress

ap	0	3	4		1	D	E	Ξ	F	-	<	5	+	4		C	4	ĸ	1	L
ny	BA	84	<6	<0	DC	30	ED	EP	FE	PG.	68.	GH	HG	нə	JH	JK	ĸJ	KL	LK	LM
flaid	۵	1	en 116	a.88y	0.376	0.624	a\$76	aysy	0.549	0.95/	0.576	0.759	0.£Y3	0.487	0.636	ay65	0.472	0.528	0.80	a.111
nimai						_	_												- 150	
inthe .									-			-		1		- 82			+ 311	+ 19
subaci .	-	-					A								+			- 82	+ 82	+ 10
<u>5</u>						-			-	_				+ 22		- 36	+ 19	+ 41		
	-				-	-							- 12	- 10	+ 19	+ 17	- 23	- 32	+ 34	+ 5
	-	-								-		1. 1		* 2	+ 10	1	- 17	- 14	+ 14	4 2
£.	-	-		-						4. 1	-	- 2	+ 1	+ 5		- 6	+ 4	+ 7	- 1	-
									- 1	- 0	4 1	+ 1	- 3	- 1			- 5	- 4	+ 6	4 1
	-			-	*	-		-				- 1	-	+ 2		- 2			- 3	
						-					• •	* 0	- 1		A	4			+ 3	+
	-	-	-						-	-			- 1					-		+ 0
•						_			-		_		-		-				1	
ι. ž									- 1	+ 1	+ 5	- 5	- 21	+ 21	+ 72	- 72	- 252	+ 252	- 57	+ 57
	-	- 151								-			-	-		1		F		1.1
•			h			м,	and a d	1.725						-	-	-		-2	- 1	17
4 - 0 -	- 3		R.	-		M.		3541	1751		-1751		2	2				F		he
		*	-17	L M		1.127		1.000	1.150	10.00	1.1	1000	1.5	1.000	120			107		7
	1 "	+===	1 7			M	21 .	\$ 234	1+25	× + +	56	-1	154.1	\$1-3-	18			6	le	44
1	+ WF		A.	+18			479.	2001	1.15a		in all		ines			49	1		+ 51	14
-1 -7	-	and the second		-		-3		Y	1		·	1		17	1		1	-		#
	1	-/85			1.1	м,	-152	Aprate	A		1.524	6353	-1753.	111.5	18-54		403	3	-23	6 hd
Ine . LILL		1	-934	1	1.1		12.0		1	1993	1.1	1.4.4	1.1	1.1		1.0		1 7		
y	1	ł			- C	N.		la.Ral	+9.053	1-73	A+E.51	a \$1-3	8 1230	1+1.05	H-1		14.15	۰. J		1.1.2
	1						- 9	P+ 3	-7=+1	*7- *	1	05 H	- 2101					-	13	7
-149.87+44812-164 +1365 + 172 -		a . 1.11		1.1.1														M	1	\$4
-18+2.93+978+				"		Ma	- 252	- 1.01	+ Las	1.43 L	- 1 - 1	-2	tL.	. 1961	2				9	50 41

RIJKSWATERSTAAT DIRECTIE BRUGGEN

CORRENT STANDARDISATION IN EUROPE

- > New structures: Eurocode (EN 1990 EN1999)
- > Existing structures: update Eurocodes in progress, various national suplementary regulations

In the past in the Netherlands

Now in the Netherlands

29 september 2017

Formulations must be consistent and based on one sound concept

> Existing structures:

- Cost-optimisation of required perfomance and service life
 - > Requirements for existing structures differ from requirements for new structures
 - > Increasing problems due to of aging, (growing) loads and exposure
- > Applying current standards may lead to (unnecessary) disapproval
 - > Current standards not cover on old materials and construction methods
 - > Detailing requirements different from old materials / application mode
- > Knowledge of old standards not always present
 - > Large spread in advice
 - > Incorrect interpretation of design data
- > Additional information is available (inspections, measurements)

nnovation

> Existing structures:

- > Give more attention to through-life management & care aspects
- Take full advantage of information that can be acquired by testing and monitoring of existing structures
- Consideration of material degradation and / or insufficient or deficient detailing of the provided material and behaviour models,
- > Better models for deterioration processes especially propagation stage
- > Structural models for deterioration / damage effects
- Employ improved models and model parameters for existing structures and effects of (phased) interventions / works

innovation

> Deterioration processes affecting concrete

- Deterioration of the concrete:
 - > Physical deterioration and dama
 - > Chemical deterioration processe
 - Biological deterioration processe
- > Deterioration of the reinforcement:
 - > Corrosion of reinforcement

innovation for life

> Deterioration processes affecting concrete

Reinforcement corrosion (chloride induced)

o innovation for life

> Deterioration processes affecting concrete

Reinforcement corrosion (carbonation induced)

> Deterioration processes affecting concrete

Freeze-thaw damage & reinforcement corrosion

> Deterioration processes affecting concrete

> Deterioration processes affecting concrete

> Overload affecting concrete

> Overload affecting concrete

Snow overload, vehicle collision

Service life verification and prediction

- to achieve the intended design service-life of structure
- to facilitate an extension of life / change of use of structure
- to minimise through-life cost and environmental impacts

innovation for life

MODEL CODE FOR CONCRETE STRUCTURES

Through-life management of structu

- stage 1: Design and construction of asset
- stage 2: Post- construction service life phase
- stage 3: Steps leading to an intervention
- stage 4: Post-intervention service life phase

> Proactive & reactive approaches to through-life care of structures

innovation for life

> Through-life management process

START : NEW

fib-Abcic-ABECE WORKSHOP fib MC2020 -Sao Paulo, Brazil

> Conservation strategies

- Strategy A: Structures which are to be managed by planned condition control activities
 - Structures where deterioration would be technically unacceptable or must not be seen.
 - Monumental, important or sensitive buildings & structures.
- Strategy B: Structures or parts thereof which are managed by reactive activities.
 - Structures where remedial measures can be taken after deterioration becomes visible.
 - Buildings and other common structures.
- Strategy C: Structures or parts thereof for which condition control is not practical.
 - Structures where it would be difficult economically and / or technically for preventative or remedial measures to be taken, such as foundations.

nnovation

> Inspection, testing and monitoring regimes for different classes of condition control

Condition control strategy: Class of condition control	Inspection, testing and monitoring regime (Associated Condition Control Level)
Proactive conservation measures: Category A structures or structural elements	Planned periodic inspection and systematic monitoring of parameters relevant to the design, especially the deterioration processes that are critical for the verification of the limit states associated to durability. Condition Control Level: CCL3
Reactive conservation measures: Category B structures or structural elements	Planned periodic inspection (i.e. visual inspection by qualified staff). No systematic testing or monitoring. Condition Control Level: CCL2
	Ad-hoc inspection and testing / investigation. No systematic inspection, testing or monitoring. Condition Control Level: CCL1
No conservation measures: Category C structures or structural elements	No direct inspection, testing or monitoring. Condition Control Level: CCL0

> Through-life work plan

	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	10
oundations	-			_			_		_					_	_		_		1	2
Piers and abutments		_	_	_	_	-	-	-	_		-	_	_	_	-	-	-	_	_	-
lain beams			_	_	_	-	_	-	-		-	_	_	_	_	-	-	_	_	
Deck slabs		_	_	_	_	-	_	-	_		_	_					- 1			
Bearings		_	_	_	_	_											- 1			
Parapets		_	_	_	_	_	_	-	_		_	-					- 1			
loints			_	_	_	_											- 1			
Vaterproofing	-	_	_														- 1			
Surfacing		_															- 1			
Gealants		-	_														- 1			
Drainage			_	_	_	_	_	_	_		_	-					- 1			

A design service life performance plan for elements of a bridge

MONITORING IN MANAGEMENT OF STRUCTURES

> What remains to be done?

- Locations for surveys, testing and monitoring activities
- Condition survey and monitoring activities
- Tools and techniques for surveys and monitoring
- Gathering data for condition control purposes
- General flow of condition survey process
- Automated monitoring of concrete structures
- Automated monitoring and updating of service life prediction

innovation for life

MONITORING IN MANAGEMENT OF STRUCTURES

Element		Property or	r behaviour	
	Structural change	Reinforcing bar corrosion	Moisture & Temp	Chemistry
Reinforced concrete /	Section strength			
prestressed concrete section	Deflection			
	Vibration			
Joints & cracks	Displacement			
Concrete	Concrete stress	Concrete resistivity	Temperature	Total chloride
	Concrete strain	CI threshold level	Moisture state	Free chloride
	Cracking	See chemistry column ref:		рН
	Young's modulus	chlorides, pH and nitrite		
				Sulfate, nitrite
				Alkali silica gel

Feasibility of automated monitoring Possible Debatable Not currently possible	Feasibility of automated monitoring	Possible	Debatable	Not currently possible
---	-------------------------------------	----------	-----------	------------------------

MONITORING IN MANAGEMENT OF STRUCTURES

Element	Property or behaviour							
	Structural change	Reinforcing bar corrosion	Moisture & Temp	Chemistry				
Reinforcing bar or	Reinforcing bar stress	Half-cell potential	Temperature					
prestressing steel tendon	Reinforcing bar strain	Galvanic current						
	Prestressing wire breaks	Polarisation resistance						
		Cumulative corrosion						
		Electrochemical noise						
External environment	Earthquake	Soil stray currents	Soil / water temp, pressure	Water pH, CI, SO₄				
			Air temp, RH, rainfall	Air composition				

MONITORING IN MANAGEMENT OF STRUCTURES

Installation of corrosion rate monitoring probes

Future: using many wireless sensors / MEMS creating BIG DATA

> Through-life management process

INTERVENTIONS IN MANAGEMENT OF STRUCTURES

- Intervention includes measures for prevention, remediation, repair and strengthening.
- The target improved performance after intervention can be higher than, equal to, or lower than the original design performance level.

Note:

Option 1 is to upgrade the performance and to lessen the deterioration rate. Option 2 is to restore the performance and to lessen the deterioration rate. Option 3 is to lessen the deterioration rate only.

INTERVENTIONS IN MANAGEMENT OF STRUCTURES

Considerations:

- Information required for design/execution of intervention and method for collecting information (damage existing in structure to be intervened is one of information)
- Materials for intervention are different to conventional materials used in existing concrete structures.
- Each intervention method usually requires a specific execution technique, such as the pretreatment of the substrate concrete surface
- Maintenance and re-intervention of structures after intervention (including assessment of performance of structures after intervention):
 - proper maintenance after the intervention is needed, including monitoring
 - re-intervention may be necessary as a planned or as unplanned activity.
 - necessary information on maintenance and re-intervention needs to be provided.

INTERVENTIONS IN MANAGEMENT OF STRUCTURES

Structural interventions (examples)

INTERVENTIONS IN MANAGEMENT OF STRUCTURES

Non-structural interventions (examples)

Prevention of concrete peel off (external bonding of FRP sheet)

Surface protection (coating resin)

Prevention of reinforcement corrosion (kathodic protection)

THANK YOU FOR YOUR ATTENTION

fib-Abcic-ABECE WORKSHOP fib MC2020 -Sao Paulo, Brazil