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Construction sector worldwide – some facts

Hong Kong 

Concrete use correlates strongly with

the economical growth and the

development of the civil infrastructure

Concrete is indispensible as building

material; annual production: 7 billion

m³/year; strong increase expected

Concrete production is associated

with 6 - 8 % of the global CO2 

emissions today; ⇨ sustainable

concretes will enter the market

In developed countries rehabilitation

exceeds construction of new

structures
Los Angeles
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Paths toward sustainable concrete

1 m³Aim: Minimal use of materials with significant influence on environmental impact
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3. Increase agg. 

content

Celitement, 

calc. clays, …
without 

SCMs!

Binder / cement content: 

100 kg/m³ instead 300...350 kg/m³ 

e.g. fly ash (FA) or 

blast furnace slag 

(BFS) and others
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Concrete development until today

Portland cement

empirical knowledge on 

reaction mechanisms

Concrete

empirical mix 

design formulas

Concrete strength

Physical properties
Deformation 

behaviour
Durability

empirical knowledge

on microstructure

ca. 300 – 400 kg/m³

compendium

for concrete

modelling
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fcm ≥ 150 MPa
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Constitutive strength-based modelling of shrinkage

MC 1990: valid for NPC

drying shrinkage
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MC 2010: valid for NPC and HPC
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MC 2020: new concretes

strength-based modelling: 

to be kept for UHPC

not to be kept for eco-

concrete and old concrete

different approach
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Comparison of eco-concrete and

conventional concrete
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Performance of eco-concrete –

Strength based prediction and measurement

c ≈ 100 kg/m³,  w/c ≈ 0.65,  fcm,cyl ≈ 60 MPa 

eco-concrete:
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Concrete development in the future

Composite 
CEM

new

binders

Calcined
Clay

Isochemical
Cements

Others

Concrete: computational designed

Properties: strength, durability, sustainability, functionality

Microstructural understanding of strength formation, deformation

properties and durability behaviour required

performance based

approach (lab testing)

new

design

concept

and

testing

tools

new

research

advanced material 

modelling (virtual lab)

ca. 100 kg/m³
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Development of cement-reduced concrete

Packing optimization

,max ( )p p p hV V V  

Vp

Vh

Vh

Vp

Vp

KIT-virtual concrete mixture calculation

Excel based software calculates optimal packing density based on the models of

Andreasen, de Larrard, Fennis and own works
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Virtual concrete design

HydraFE

0.1 mm

Simulation of microstructure

Numerical tools to predict: porosity, transport coefficients, strength, …

CEMHYD3DTube model
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Provide the designer with input data on material properties

for crude estimates

for more sophisticated methods of design

for FE applications

Improvement of the models in chapter 5.1 of MC 2010 where necessary

All types of structural concrete should be covered

Holistic approach of construction‘s life cycle:

Safety

Serviceability

Durability

Sustainability

Material models

Strength

Stress and strain

Time effects

Temperature effects

Non-static loading

Deterioration processes

Main objective of the chapter „Concrete“ 

in the MC 2020
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MC 1990 MC 2010Criterion

concrete strength

concrete type

20 … 60 (90) MPa

normal strength

20 … 130  MPa

normal strength

high strength

lightweight (10 … 90 MPa)

self-compacting

green (eco-concrete)

different ranges of applicability, depending on the related load 

(static, impact etc.); temperature range: mainly 0 °C < T < 80 °C  

concrete loads

tailor-made

concrete

reference to test standards 

or recommendations

Range of applicability

MC 2020

20 … 130  MPa

normal strength

high strength

lightweight (10 … 90 MPa)

self-compacting

green (eco-concrete)

ultra-high strength 

(… 250 MPa)

old concrete
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Old concrete – the aging problem
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Aging can‘t be sufficiently described by hydration

Interrelation of actions (load, environment) plays a decisive role
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> 30%
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Old concrete – creep characteristics

young concrete

duration of loading, t-t0

Dcc

c
re

e
p

s
tr

a
in

s
, 
 c

c

old concrete

predictable

by models

old preloaded

concrete

dependent on age of concrete 

and moisture content (size 

and environment)

Dcc
dependent on stress level, age 

of concrete and moisture 

content (size and environment)

For creep sensitive old structures tests are required.

However, creep of old concrete is very low.
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Classification of concrete with respect to

modelling its performance

Concrete 

type

Model

basis

Validity 

ranges of 

strength-

based 

models

Conventional

concrete: NSC, HSC

strength

(grade)

new old

strength (grade) 

and / or

performance

Non-conventional

concrete

UHPC ECO other

concrete performance 

based on tests

binder c [kg/m³] w/c aggregates additions admixtures

CEM I

CEM II

CEM III

or

similar

350

± 150

normal/LWA

sand/gravel

acc. to

NS, CEN

or ISO

type,

amount

acc. to

NS, CEN

or ISO

0.50

± 0.20

type,

amount

acc. to

NS, CEN

or ISO
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Deformation
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Shrinkage prediction for Brazilian concretes
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The model predicts the total shrinkage defor-

mations for NSC and HSC very well. For HSC 

a poor prediction of basic shrinkage was seen. 

However, this is just one test!

Source: Kataoka, Luciana T.. Análise da deformabilidade por
fluência e retração e sua utilização na monitoração de pilares de 
concreto

Test data and MC 2010 prediction
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Constitutive modelling of shrinkage

drying shrinkage
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basic shrinkage cbs cds

MC 2010 and MC 2020

Basic shrinkage:

Drying shrinkage:
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Extension in MC 2020 – final shrinkage Extension in MC 2020 – time-development

adaption factors 

for final shrinkage

adaption factors for 

time-development

Adaption factors to be determined from a few well-defined shrinkage tests
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Basic shrinkage:

Drying shrinkage:
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Shrinkage model in MC 2020

Time-development functions in MC 2020 model

test data

Duration of drying, t-ts log (t-ts)
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adapted model: best fit 

for cbs1, cbs2, cds1, cds2

j j+1

adaption factors  

adaption factors

Improvement of shrinkage prediction by short-term tests

Accuracy gain through tests: Coefficient of variation drops from V  30 % to V  10 %

90 d < t-ts < 120 d
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Constitutive modelling of stress-linear creep
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Product type model:

Summation type model:

Both types of model may be 

expressed as:

total creep = basic creep + drying creep 

delayed

elasticity
flow

Variable stresses and strain Table 3.2 for DRAFT 02 ? Constant stress
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Source: Kataoka, Luciana T.. Análise da deformabilidade por fluência

e retração e sua utilização na monitoração de pilares de concreto
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The model predicts the creep deformations in 

both cases within the expected scatter range

Test data and MC 2010 prediction
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Creep prediction for Brazilian concretes
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MC 2010 and MC 2020

drying creep
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for creep magnitude 
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for time-
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basic creep

Adaption factors to be determined from a few well-defined creep tests

Constitutive modelling of creep
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Basic creep:

Drying creep:
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Adapted creep model

Adapted time-development functions

adaption factors 

adaption 

factors

model

test data

Duration of loading, t-t0 log (t-t0)
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adapted model: best fit 

for bc1, bc2, dc1, dc2

j j+1

Improvement of creep prediction by short-term tests

Accuracy gain through tests: Coefficient of variation drops from V  30 % to V  10 %

90 d < t-ts < 120 d
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Durability
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Descriptive Concept of Eurocode 2, national standards 
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Service life design  – Basic approaches
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Probabilistic Concept of fib Model Code  2010 
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approach: pf(t) = pf [R(t) – S(t) ≤ 0] ≤ ptarget
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c e c t ACC,0 t SS x t 2 k k (k R ) C t W(t)          

Service life design  – Basic approaches
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Descriptive Concept:

- very simple but also very crude: „deemed to satisfy“

- service life is fixed, e.g. 50 years; no information on other ages, e.g. 20 or 100 years

- no information on the failure probability (risk of failure, damage development)

Probabilistic Concept:

- overcomes all weeknesses of the Decriptive Concept

- needs damage models (not yet available for some deteroriation processes)

- needs statistical software and tests on concrete

⇨ Target for MC 2020: Find compromise for everyday practice

Service life design  – Basic approaches
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Design parameters

[(m2/s)/(kg/m3)]

Service life 

[years]

β

[-]

pf

[%]

high values 

(> 1,7·10-10)

50
1.7 5

1.3 10

100
1.7 5

1.3 10

medium values

(1,7·10-10 –

1,9·10-11)

50
1.7 5

1.3 10

100
1.7 5

1.3 10

low values

(< 1,9·10-11)

50
1.7 5

1.3 10

100
1.7 5

1.3 10

1

ACC,0R

2

1 c
ACC,0

x
R  

  
 

inverse effective carbonation resistance of concrete [(m2/s)/(kg/m3)]
1

ACC,0R

time constant for described test conditions (τ = 420) [(s/kg/m3)0.5] τ

measured carbonation depth [m]

Performance testing (ACC-Test, 28 days of curing and 28 days of testing)

xc

Carbonation induced corrosion –

Simplified design aid
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Design parameters Design results

[(m2/s)/(kg/m3)]

Service life 

[years]

β

[-]

pf

[%]

Carbonation depth / Concrete cover c [mm]

Indoors [50 %] Outdoors [80 %]

high values 

(> 1,7·10-10)

50
1.7 5 95 75

1.3 10 90 65

100
1.7 5 135 110

1.3 10 125 95

medium values

(1,7·10-10 –

1,9·10-11)

50
1.7 5 35 30

1.3 10 30 25

100
1.7 5 50 40

1.3 10 45 35

low values

(< 1,9·10-11)

50
1.7 5 20 15

1.3 10 15 10

100
1.7 5 30 20

1.3 10 20 15

1

ACC,0R

2

1 c
ACC,0

x
R  

  
 

inverse effective carbonation resistance of concrete [(m2/s)/(kg/m3)]
1

ACC,0R

time constant for described test conditions (τ = 420) [(s/kg/m3)0.5] τ

measured carbonation depth [m]

Performance testing (ACC-Test, 28 days of curing and 28 days of testing)

xc

Carbonation induced corrosion –

Simplified design aid
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Limit state: Depassivation due to carbonation

R
e
li
a
b

il
it

y
 i

n
d

e
x
 β

 [
-]

Concrete cover c [mm]

10 20 30 40 50 60 70

0.0

0.3

0.7

1.0

1.3

1.7

2.0

„high Rc“

Service life: 100 years Service life: 50 years

1.0

1.3

1.7

2.0

2.3

2.7

0.7

Rc = carbonation resistance
„medium Rc“

„low Rc“

Outdoor sheltered 

(RH ≈ 80 %)

Carbonation induced corrosion –

Simplified design aid (2)
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With respect to the variety of different concrete types to be addressed in MC 

2020 the classical strength based approach for modelling concrete behaviour 

has to be partially shifted towards a performance based modelling.

Models for strength and deformation characteristics in MC 2020 will be 

presented such that test results obtained on the respective concrete may be 

introduced to improve the accuracy considerably. 

For the performance based concept for durability and service life prediction 

suitable simplified design tools will be made available. These tools will be as 

simple as the deemed-to-satisfy approaches of today but much more accurate.

Conclusions and outlook
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Thank you for your attention!


